Macrophages and acylcarnitines; New players in aspirin-exacerbated respiratory disease?

Tanya M. Laidlaw, MD, Barbara Balestrieri, MD

PII: S0091-6749(20)31498-6
DOI: https://doi.org/10.1016/j.jaci.2020.09.040
Reference: YMAI 14811

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 6 August 2020
Revised Date: 10 September 2020
Accepted Date: 18 September 2020

Please cite this article as: Laidlaw TM, Balestrieri B, Macrophages and acylcarnitines; New players in aspirin-exacerbated respiratory disease?, Journal of Allergy and Clinical Immunology (2020), doi: https://doi.org/10.1016/j.jaci.2020.09.040.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology.
Editorial.

Macrophages and acylcarnitines; New players in aspirin-exacerbated respiratory disease?

Tanya M. Laidlaw, MD¹ and Barbara Balestrieri, MD¹

¹Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

Corresponding Author: Tanya M. Laidlaw, MD
Address:
Brigham and Women’s Hospital,
60 Fenwood Road, Building of Transformative Medicine, Rm 5002M
Boston, MA 02115
Phone: 617-525-1034
Fax: 617-525-1310
Email: tlaidlaw@bwh.harvard.edu

Conflict of Interest: T Laidlaw has served on scientific advisory boards for GlaxoSmithKline and Sanofi-Genzyme, Optinose, and Regeneron. B Balestrieri has no conflicts of interest.

Key words: AERD, macrophages, type 2 inflammation, acylcarnitines, fatty acids, eicosanoids.
In this issue, the authors of a new study report an inflammatory macrophage memory and subsequent overproduction of acylcarnitines that may contribute to the respiratory pathology present in aspirin-exacerbated respiratory disease (AERD) (1). In a field long-dominated by discussions of eosinophils, mast cells, Type 2 cytokines and cysteinyl leukotrienes, this study is strong evidence of the power of enterprise and creativity in science. It presents a number of surprising findings that will, hopefully, serve as a new guide for other researchers to follow novel paths of investigation. The immunological macrophage memory described is immediately evident in the RNAseq analysis comparing alveolar-like monocyte-derived macrophages (aMDM) from patients with AERD to those from healthy donors, which shows that despite a week of in vitro differentiation, the cells from AERD patients have a persistent upregulation of chemotaxis-related genes and downregulation of host defense-related genes. The abnormally activated state of macrophages they identify in AERD is notable for the increased production of cytokines and chemokines and the increased release of proinflammatory lipids. The lipids responsible for the macrophages' activation state include lipids derived from the metabolism of arachidonic acid, particularly leukotrienes produced by 5-lipoxygenase (LO), as previously reported (2), but also acylcarnitine metabolites, which are newer players in this story (Figure 1).

The authors also show that compared to healthy individuals, aMDM from AERD patients produce more polyunsaturated fatty acids, and have increased fatty acid oxidation. The consequence of this elevated fatty acid oxidation in AERD is supported by metabolomic data showing reduced methylation of genes involved in fatty acid/acylcarnitine metabolism, and increased levels of acylcarnitine metabolites found in the nasal fluid, sputum, and plasma of AERD patients.

By comparing the transcriptome of macrophages isolated from induced sputum (sMAC) to that of aMDMs differentiated from blood CD14⁺ monocytes, the authors aimed to determine whether the aberrant macrophage phenotype was confined to the local respiratory tissues or was
reflective of a systemic abnormality. They report a leukotriene-dominant eicosanoid profile in the aMDMs and a 15-LO-dominant profile in the sMACs. Since sMAC are freshly isolated, their proinflammatory memory is dictated by the proinflammatory environment in which they develop (3). However, aMDMs are cultured in granulocyte-macrophage colony-stimulating factor and transforming growth factor-β, which increase the expression of 5-LO and leukotriene C4 synthase (LTC₄-synthase) (4, 5). Therefore, they concluded that the persistent pro-inflammatory macrophage phenotype was present in both the airways and the blood of AERD patients. Upon stimulation with Ca²⁺ ionophore, the aMDMs differentiated from AERD patients produced significantly more arachidonic acid- and 5-lipoxygenase-derived metabolites than did aMDMs from healthy controls. Upon stimulation with lipopolysaccharide (LPS), those AERD aMDMs also released more acylcarnitine metabolites than did aMDMs from healthy controls. The overproduction of arachidonic acid-derived eicosanoids is well known in AERD, but the potential for overproduction of acylcarnitines has not been thoroughly studied in this disease. To explore whether cellular changes in metabolite profiles were reflected systemically, the authors performed a metabolomics analysis of plasma from patients with AERD, aspirin-tolerant nasal polyposis, and healthy controls, which revealed that AERD plasma has notably higher levels of sphingomyelins and medium- and long-chain acylcarnitines. This suggests that AERD involves much broader dysregulations in lipid metabolism than has been previously appreciated.

Stimulation of aMDM from AERD patients with LPS and C14-carnitine induced an M2 activation state, a spectrum of activation associated with type 2 inflammation, with upregulation of CCL17 but not of TGM2 or MRC1, two major markers of M2 activation (6). However, both molecules were minimally upregulated by C14-carnitine alone. Since fatty acid oxidation is associated with M2 activation (7), it would be interesting to ascertain with future experiments whether IL-4 +/- C14-carnitine would elicit a novel spectrum of M2 activation in aMDM derived from AERD patients compared to those derived from healthy controls (8). In order to definitively prove that
tissue macrophages in patients with AERD exist in an altered metabolic state of increased
activation, further ex vivo studies need to be pursued that include direct isolation of
macrophages from the nasal polyps. Ideally, we would want to see comparisons between the
macrophages isolated from nasal polyp tissue of patients with AERD and those from patients
with aspirin-tolerant chronic rhinosinusitis with nasal polyposis and non-polyp sinus tissue as
well. In addition to replicating some of the stimulation assays presented in this study, additional
disease-specific experiments would also be of interest, including an exploration of whether
aspirin or another cyclooxygenase-1 inhibitor might induce the same transcriptional and
metabolic changes that LPS ± C14-carnitine did in the aMDMs examined in this study. The
results of that ex vivo cellular aspirin challenge would then inform clinical researchers regarding
the potential value in checking polyunsaturated fatty acids and acylcarnitine levels in the nasal
fluid and serum of patients with AERD who undergo aspirin challenges and subsequent aspirin-
induced reactions.

As with any excellent translational research project, the results presented by the authors here
lead us to more questions than answers. First, elevated rates of fatty acid oxidation and
acylcarnitine overproduction are often considered in the context of insulin resistance and
metabolic disorders, and the authors regarded the potential role of obesity in their study but
found no correlation. Acylcarnitines are key regulators of the balance of intracellular sugar and
lipid metabolism. Therefore, the finding that glucose metabolism is not abnormal in AERD
confirms that the main acylcarnitine pathway altered is dependent on the supply of free fatty
acids (Figure 1). Certain chronic inflammatory conditions can also trigger a metabolic
reprogramming that upregulates fatty acid oxidation in myeloid cells.(9) The data from this study
suggest that the respiratory inflammation in AERD may indeed either lead to or be the result of
increased rates of myeloid fatty acid oxidation, and imply that several free fatty acid-induced
pathways may be responsible for the inflammatory memory in the macrophages of AERD.
patients (Figure 1). Second, one general mechanistic question, which is nearly impossible to answer with human case-control studies, is whether the macrophage immunological memory is causative of the chronic respiratory inflammation in AERD, or a consequence of that chronic inflammation. Attacking this question will likely involve an interventional trial. There may be murine models to guide us, as there have been several studies of pharmacologic inhibition of fatty acid oxidation in murine models of asthma that suggest potential utility. Etomoxir, an inhibitor of the fatty acid oxidation rate-limiting enzyme carnitine palmitoyltransferase-1 (CTP1) that decreases long-chain acylcarnitine production, was used as a treatment thirty minutes after ovalbumin challenge in an ovalbumin-based mouse asthma model. This intervention provided a significant reduction in the recruitment of eosinophils and macrophages into the lungs, and a protection against ovalbumin-induced hyperresponsiveness that was associated with a decrease in Th2 cytokine production (9). Unexpectedly, etomoxir inhibited IL-4-dependent M2 macrophage polarization only at high concentration (200uM), suggesting off-target effects, likely dependent on the reduced availability of free CoA (10). Therefore, although the clinical use of etomoxir itself may be limited due to side effects, there are several other pharmacologic agents in this pathway that are currently under investigation for use in a number of diseases – perhaps AERD should be one of them? Additionally, since fatty acid oxidation is a catabolic pathway secondary to the increase in fatty acid supply, any new therapies for AERD in this area should also take into account limiting various sources of fatty acids.
References

Figure 1. Sources of fatty acids in macrophages and implications in AERD. Fatty acids originate from phospholipase A₂ hydrolysis of membrane glycerophospholipids, which generates lysophospholipids, including lysophosphatidylcholine, and various free fatty acids including arachidonic acid, which is then metabolized to eicosanoids. Lipid droplets (yellow drops) store fatty acids in the cell and fatty acid transporters allow free fatty acids to enter the cell. Acylcarnitines are generated in mitochondria through CPT1 (Carnitine palmitoyl-transferase 1). Underlined are the mediators increased in AERD macrophages at baseline (purple) or after stimulation, with LPS (red), Ca²⁺ ionophore (brown-green), C14-carnitine+LPS (blue), and acylcarnitine mix (bright green). In gray font are the mediators of the prostaglandin pathway, of which PGE₂ has been found to be decreased in AERD.

LA (linoleic acid), EPA (eicosapentaenoic acid), DHA (docosahexaenoic acid), 11/13-HDHA (11/13-hydroxy docosahexaenoic acid), HODE (Hydroxyoctadecadienoic acid), HEPE (Hydroxyeicosapentaenoic acid), HETE (Hydroxyeicosatetraenoic acid), HPETE (Hydroperoxyeicosatetraenoic acid), lipoygenase (LO), PG (prostaglandin), LT (leukotriene), COX (cyclooxygenase), FFA (free fatty acid), FLAP (5-lipoxygenase-activating protein).