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ABSTRACT
Aspirin-exacerbated respiratory disease (AERD) is characterized by chronic eosinophilic nasal polyps, asthma, and airway reactions upon cyclooxygenase

(COX) 1 inhibition. AERD is present in up to 7% of adult patients with asthma and the underlying pathogenesis remains largely elusive but prostaglandin
D2, cysteinyl leukotrienes, mast cells, and type 2 cytokines are thought to contribute. A wealth of studies have recently implicated group 2 innate lymphoid
cells (ILC2), a novel lineage-negative lymphocyte population that produces type 2 cytokines, in human allergic disease pathogenesis. Importantly, our recent
work identified that ILC2s are recruited to the nasal mucosa of patients on AERD after COX-1 inhibitor administration. Here, we review the potential impact
of ILC2s in the development and propagation of type 2 inflammation in AERD.

(Am J Rhinol Allergy 32, 7–11, 2018; doi: 10.2500/ajra.2018.32.4498)

Aspirin-exacerbated respiratory disease (AERD) is a type 2 im-
mune-mediated respiratory disease associated with asthma

and nasal polyposis, and is defined by hypersensitivity reactions from
cyclooxygenase (COX) 1 inhibition. All nonspecific nonsteroidal in-
flammatory drugs are capable of triggering a reaction, in distinction
to COX-2 specific inhibitors, which generally are safe in AERD. AERD
is an endotype of chronic rhinosinusitis (CRS) with nasal polyposis
(CRSwNP) as well as asthma.1 As such, it is clear that a mechanistic
understanding of AERD would inform a broader understanding of
type 2 respiratory inflammation. Compared with patients who are
aspirin tolerant and with similar diagnoses, AERD patients have more
severe asthma and sinus disease.

It is evident that the pathophysiology of AERD steers this disorder
toward more aggressive inflammatory consequences. What is unclear
is whether the inflammation in AERD is just an increase in the
magnitude of “ordinary” type 2 inflammation, similar to what is seen
in many patients with asthma and most patients with CRSwNP in
U.S. and European populations, or whether unique inflammatory
components separate AERD from other inflammatory airway disor-
ders. The likely possibility is that overlapping features of both con-
ventional allergic inflammation and unique aspects are present in
AERD.

Innate lymphoid cells (ILC) are recently identified immune cells of
lymphoid origin.2 These cells share some functions with T-helper (Th)
cells, yet the lack of canonical T-cell receptors prevents antigenic
specificity. ILCs that reside at mucosal surfaces augment immune
activation through rapid and abundant cytokine production. Based
on the cytokine output and transcriptional control elements, ILCs
can be classified into type 1, type 2, and type 3, which correspond
with Th1, Th2, and Th17/22 subtypes, respectively.2 Group 2 ILCs
(ILC2) are capable of producing interleukin (IL) 4, IL-5, IL-9, and
IL-13 after stimulation by cytokines IL-25, IL-33, or thymic stromal
lymphopoietin (TSLP) as well as lipid mediators prostaglandin D2

(PGD2) and cysteinyl leukotrienes (CysLTs).3 IL-33, TSLP, and
IL-25 are primarily produced by the epithelium in response to
mucosal injury. Importantly, many environmental insults can trig-
ger ILC2 responses, including viruses and allergens.

The underlying cause of AERD is unknown, but several lines of
evidence point toward an environmental triggering mechanism. Pa-
tients with AERD are three times more likely to have had early life
second-hand smoke exposure.4 AERD develops in most patients in
the fourth decade of life, and approximately half of the patients
described a viral upper respiratory infection at the onset of their
illness.5 Although genetic polymorphisms associated with AERD
have been described, these are diverse, and no unifying genetic
background seems to confer risk of AERD. Thus, it is likely that, in
patients with a background of genetic risk, environmental cues are
primarily responsible for disease initiation. Importantly, ILC2s are
situated at mucosal surfaces and are responsible for transduction of
inflammatory stimuli into activation signals for a more organized
type 2 immune response and thus are ideal culprits to be initiating
and propagating inflammatory signaling in AERD. A proposed dia-
gram of how ILC2s might contribute to AERD pathogenesis is shown
in Fig. 1.

Clinical Aspects of AERD
Significant heterogeneity exists within asthma; much recent work

has been done on proper clinical phenotyping and immune charac-
terization of patients with asthma. Phenotyping predicts treatment
response because asthma associated with eosinophilia responds to
anti–IL-5 based therapy, whereas patients with allergic asthma are
more likely to respond to anti–immunoglobulin E (IgE) therapy.6

Among patients with asthma and patients with sinus disease, the
presence of AERD is strongly associated with severity.7 Patients with
AERD are much more likely to have polyp recurrence within 6
months after surgery and to have a much higher burden of surgery
when compared with aspirin-tolerant sinus disease.8

Similarly, patients with asthma and with AERD are more likely to
have been intubated for asthma and to have more severe airflow
obstruction. In patients who were clinically phenotyped with severe
asthma, the group contained larger numbers of patients with AERD,
with approximately twice the rate of AERD than that seen in the general
asthma community.9–11 AERD is present in �7% of all patients with
asthma and a similar number in patients with chronic sinusitis.12 In
patients with severe asthma, AERD is overrepresented, with 15% having
AERD, and, in patients with both severe asthma and nasal polyposis,
rates of AERD might be as high as 30–40%.11,13

The use of aspirin as a therapy (after desensitization) has been well
described, and most recommendations include commence this treat-
ment after a debulking polypectomy in patients with recalcitrant
disease.14 Aspirin therapy, usually at a dose of 325 mg twice a day up
to 650 mg twice a day has been shown to delay polyp recurrence, to
significantly improve symptoms, and to decrease the need for sys-
temic corticosteroids.15,16 Other treatments include leukotriene mod-
ifier drugs, aggressive sinus rinses, and topical corticosteroids.17 For
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patients with uncontrolled asthma, anti–IL-5 or anti-IgE treatments
might also be an option.

Tissue Eosinophilia in AERD
AERD is invariably associated with nasal polyposis, and, although

CRS without nasal polyposis is often mixed or type 1 inflammation,
nasal polyposis is usually associated with eosinophilic polyp involve-
ment. Interestingly, in the United States and in European countries,
most nasal polyps are eosinophilic, whereas, in China, where nasal
polyposis is typically noneosinophilic, AERD is extremely rare.18,19

When compared with aspirin-tolerant polyps, AERD polyps contain
twice as many eosinophils.20 Similarly, bronchial biopsy specimens of
subjects with AERD exhibited eosinophilia which is elevated when
compared with patients with non-AERD asthma and increased eosi-
nophiilic cationic protein (ECP) levels confirmed heightened activa-
tion of those eosinophils.21

Several unique characteristics are observed regarding eosinophils
in AERD. Specifically, although IL-5, IL-3, and granulocyte-macro-
phage colony-stimulating factor (GM-CSF) are most commonly asso-
ciated with expansion, recruitment, and terminal eosinophil differen-
tiation, interferon (IFN) � has also been detected in AERD tissue.
Steinke et al.22 and Steinke and Borish23 demonstrated an IFN-� level
much higher in AERD polyps than in non-AERD polyps. In these
studies, IFN-� was being produced from the eosinophils themselves
and acted in synergy with IL-5 to promote eosinophil survival. Sub-
sequently, Stevens et al.24 did not observe a strong IFN-� signature in
a survey of cytokines seen in AERD and sinus disease.

AERD is associated with a modest peripheral eosinophilia. During
aspirin challenges, when the respiratory reaction occurs, the circulat-
ing peripheral eosinophils completely disappear.25 Given the unleash-
ing of CysLTs, PGD2, and other potent type 2 mediators, it is likely
that the peripheral eosinophils are trafficking to the site of inflamma-
tion (upper and lower airway) and out of the periphery.

PGD2 in AERD
PGD2, until recently, has been associated exclusively with mast cell

production. Having now been observed to be produced directly from
eosinophils, its role should be more carefully examined in AERD, in
which both cell types associated with PGD2 production are dominant
(eosinophils and mast cells).26 In work from Fajt et al.,27 an elevated
PGD2 axis is associated with severe asthma. Given the recognition of
AERD as an asthma phenotype associated with severe disease, it
should not be a surprise to find evidence for PGD2 in the pathophys-
iology of AERD.

Cahill et al.28 described a dominant role of PGD2 in an AERD
phenotype associated with severe gastrointestinal and cutaneous re-
actions to aspirin. Specifically, the suppression of PGD2 by aspirin
was incomplete at threshold doses that cause aspirin reactions.28

Although their report identified a unique subphenotype of AERD, it
is applicable to the importance of PGD2 in AERD in general. This
observation lends weight to the hypothesis that the therapeutic ben-
efit in AERD might be, in part, related to pharmacologic inhibition of
COX-1 and subsequent modulation of the PGD2 signal.

Leukotrienes in AERD
One of the early mechanistic insights into AERD was the observa-

tion that leukotriene E4 (LTE4) is significantly elevated at baseline in
AERD patients (sixfold higher), with further elevation after the aspi-
rin-induced reaction.29 Other components of the leukotriene pathway
are upregulated in AERD, including leukotriene C4 synthase (LTC4S)
in bronchial biopsy specimens as well as 5-lipoxygenase (5-LO) and
LTC4S in nasal mucosa.21 There are at least four receptors involved in
leukotriene C4 (LTC4), leukotriene D4 (LTD4) and LTE4 signaling,
including CysLT1, CysLT2, P2Y12, and GPR99 receptors. CysLT1 and
CysLT2 receptors have well-described functions in mediating the
effects of LTC4 and LTD4 (including, e.g., bronchoconstriction, eosin-
ophil influx, and mucus production). LTE4, the stable terminal leu-
kotriene, has little effect on CysLT1 and CysLT2. Thus, the potent
bronchoconstrictor effect of LTE4 must be mediated through actions
of an additional receptor. P2Y12 and GPR99 receptors both recognize
LTE4 and might be important clinically in allergic inflammation.30,31

Type 2 inflammation in AERD
Type 2 inflammation specifically refers to an eosinophilic and mast

cell–rich inflammatory process driven by typical allergic cytokines,
yet it broadens the mechanisms to include nonantigen or T-cell inde-
pendent processes. Type 2 inflammation is appropriate to describe
AERD, a disease with intense eosinophilic and mast cell involvement
yet in which specific IgE processes as directed by Th2 cells likely play
a minor role. Type 2 innate inflammation is often orchestrated by the
epithelium where various stimuli can lead to the production of TSLP,
IL-33, and IL-25. Buchheit et al.25 demonstrated that TSLP is respon-
sible for increasing the synthesis of PGD2 in mast cells. With COX-1
inhibition, one of the hallmarks of AERD reactions then becomes the
release of PGD2, with associated clinical effects.

Further work, by Liu et al.,32 identified IL-33 as a central mediator
that bridges epithelial injury with mast cell activation and eosinophil
recruitment through the action of CysLTs.32 Recently, plasma levels of
IL-25 were found to be increased in patients with AERD compared
with controls and correlated with reductions in forced expiratory
volume in the first second (FEV1) after aspirin challenge.33 These
studies frame a new paradigm for AERD, in which initial epithelial
injury and production of TSLP and/or IL-33, and possibly IL-25,
directly affects mast cell and eosinophil recruitment and activation. It
is interesting to speculate on the nature, severity, and duration of the
initial inflammatory event that leads to the perpetually dysregulated
AERD syndrome.

Figure 1. Proposed role of group 2 innate lymphoid cells (ILC2) in aspirin-
exacerbated respiratory disease (AERD) pathogenesis. Mast cells, eosinophils,
and neutrophils (polymorphonuclear leukocytes, PMN) with adherent platelets
produce ample cysteinyl leukotrienes (CysLT) in AERD. CysLTs and epithelial
damage can then induce epithelial interleukin (IL) 25, IL-33, and thymic stromal
lymphopoietin release that then directly activates ILC2s and mast cells. CysLTs
and prostaglandin D2 (PGD2) from activated mast cells and eosinophils
subsequently induce ILC2 IL-4, IL-5, and IL-13 production. ILC2 IL-5
propagates tissue eosinophilia, whereas IL-4 and IL-13 in concert with
CysLTs and PGD2 promote upper and lower airway inflammation, mucus
production, bronchoconstriction, and tissue remodeling.
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ILC2 Identification and Localization
Group ILC2s were initially reported in 2010 and are lineage-nega-

tive lymphocytes that produce high levels of IL-5 and IL-13.3 Lineage
negative implies that exclusion of other lymphocytes, including T, B,
natural killer (NK), and natural killer T (NKT) cells, by using lineage-
specific markers with flow cytometry is required to detect ILC2s. In
addition to being lineage negative, human ILC2s express chemokine
receptor homologous molecule expressed on Th2 lymphocytes
(CRTH2, receptor for PGD2), IL-2R (CD25), IL-7R (CD127), and
CysLT1 receptor. Human ILC2s have been detected in lung, bron-
choalveolar lavage (BAL), nasal mucosa, nasal polyps, gastrointesti-
nal tract, skin, and blood.3 The widespread tissue distribution in
humans allows for ILC2s to potentially contribute critically to type 2
responses in many organ systems and in a variety of diseases.

Regulation of ILC2 Activation
ILC2s produce large amounts of type 2 cytokines in response to

epithelial cytokines IL-33, TSLP, and IL-25 as well as lipid mediators
that include PGD2 and CysLTs.3 Initially, ILC2s were shown to be
activated in mice by epithelial cytokines IL-25 and IL-33.3 Although a
rare population of lymphocytes, ILC2s produce massive amounts of
IL-5 and IL-13 per cell (�g range for 50,000 cells) after stimulation in
vitro.34 Thus, despite low numbers, ILC2s likely contribute signifi-
cantly to disease due to the impressive potency of Th2 cytokine
production. Further, because they are not antigen specific, the possi-
bility exists that the majority of the ILC2s present in a given tissue are
activated by local stimulation. After the initial mouse studies, human
ILC2s were reported to respond to TSLP in addition to IL-33 and thus
bridges an important gap between the known elevation of TSLP in
samples from patients with asthma and atopic dermatitis and the
activation of ILC2s.35 Prior to this, TSLP was largely thought to
regulate adaptive CD4� Th2 cell responses through dendritic cell
activation.36

Lipid mediators that include prostaglandins and leukotrienes are
increased during type 2 inflammation and have pleiotropic effects on
several inflammatory cell types as well as regulate bronchial hyper-
reactivity and tissue remodeling. The first study that linked lipid
mediators and ILC2 responses showed that PGD2 enhanced human
blood ILC2 Th2 cytokine production, whereas lipoxin A4 prevented
the PGD2-mediated increase.37 After this report, our group showed
that mouse ILC2s highly express CysLT1 receptor and rapidly pro-
duce high levels of IL-4, IL-5, and IL-13 when stimulated with LTD4,
which has the highest affinity for CysLT1 R among the CysLTs.38

More recently, CysLTs have been shown to activate human ILC2s and
that both PGD2 and CysLTs also promote chemotaxis of ILC2s.39–41

Interestingly, prostaglandin I2 reduces ILC2 activation in mice and
humans, which is supportive that lipid mediators contribute to com-
plex regulation of ILC2s, depending on the cytokine milieu.42 Overall,
lipid mediators that are thought to be at the core of AERD pathogen-
esis are also potent ILC2 activators.

ILC2s in Asthma
Asthma and CRS are characteristic features of AERD. ILC2s have

been shown to promote asthma features in mouse models and were
recently detected in tissue samples from patients with CRS and pa-
tients with asthma.3,43–49 The first study to identify ILC2s in the
sputum of patients with asthma showed that sputum cytokine–pro-
ducing ILC2s were elevated in patients with severe asthma, including
those who were taking systemic corticosteroids.44 The same group
subsequently showed that airway allergen challenge in patients with
mild asthma led to recruitment of ILC2s to the airway.43 Another
study demonstrated elevation of BAL IL-13� ILC2s in the airway of a
heterogenous group of patients with asthma versus controls.50

A recent report indicated that human ILC2s become corticosteroid
resistant in the presence TSLP, which is elevated in the BAL of

patients with severe asthma compared with patients with nonsevere
asthma.51 Mouse models also support that TSLP renders ILC2s resis-
tant to corticosteroid treatment.52 Importantly, because TSLP may
also contribute to AERD pathogenesis,25 ILC2-driven responses that
lead to tissue eosinophilia and airway hyperresponsiveness (AHR) in
these patients may be refractory to corticosteroid treatment. Several
groups also correlated changes in blood levels of ILC2s with the
presence and severity of asthma, and suggest that blood ILC2s may be
recruited from bone marrow to lung in asthma and might be a
biomarker of disease.53–55 Overall, ILC2s have emerged as key con-
tributors to type 2 lung diseases, including asthma.

ILC2s in Allergic Rhinitis
Allergic rhinitis (AR) is largely considered an IgE-mediated nasal

inflammatory disease, although ILC2 changes in the blood have been
detected after allergen challenge and during pollen seasons.56,57 Our
initial studies to investigate peripheral blood ILC2s in AR found that
nasal challenge with cat allergen in patients with cat-sensitized AR
leads to increased ILC2s compared with diluent control challenge.57

Supportive of ILC2 changes with allergen in AR, another study found
that peripheral blood ILC2s were increased in patients with grass
pollen AR during the pollen season compared with control patients.56

Further, ILC2 levels were reduced by subcutaneous immunotherapy,
which is also supported by another report.58 However, a previous
report found that a group of patients with AR at baseline had similar
numbers of peripheral blood ILC2s in contrast to patients with aller-
gic asthma who had higher levels of ILC2s.55

One possibility to explain this seeming discrepancy is that ILC2s in
peripheral blood increase relative to baseline after allergen exposure,
although baseline levels may not be significantly higher than the
controls, especially outside of allergen season. Another possibility
that was recently explored is whether different allergens have differ-
ent effects on ILC2s in AR. Fan et al.59 found that ILC2s were increased
in peripheral blood in patients with house-dust mite AR compared
with mugwort AR (ILC2s from mugwort AR were no different than
healthy controls) and that in vitro ILC2 Th2 cytokine responses to
IL-25 and IL-33 were increased in the house-dust mite AR group.59

Mouse models are also supportive of these findings because re-
sponses to different allergens are known to result in different levels of
IL-33 release and ILC2 activation.60

ILC2s in CRSwNPs
Nasal polyps are a primary feature of AERD and are a significant

cause of morbidity for patients. Although the majority of patients
with nasal polyps do not have AERD, the relationship between ILC2s
and nasal polyposis may provide insight into AERD pathogenesis.
Importantly, tissue from patients with CRS showed elevated levels of
CysLTs, IL-33, TSLP, and PGD2,61–64 which could all activate ILC2s
independently or in an additive or synergistic manner.65 Multiple
groups have demonstrated that ILC2s are enriched in nasal polyps
compared with control tissue.46,66–69

Levels of ILC2s correlate positively with eosinophilic polyps (the
endotype present in AERD) as well as blood eosinophils and symp-
tom scores, and with or without the presence of allergy. The finding
across multiple studies that ILC2s correlate with the eosinophilic
polyp endotype strengthens ILC2s as prime candidates to drive polyp
eosinophilia through IL-5 production. Functional assays from nasal
polyp ILC2s are limited, but Mjosberg et al.35 showed that polyp
ILC2s and short-term ILC2 cell lines produce Th2 cytokines in re-
sponse to IL-33 and TSLP, and that this was dependent on GATA
binding protien 3 (GATA3), the master Th2 cytokine transcription
factor. Overall, these studies strongly indicate that ILC2s may con-
tribute to CRS and nasal polyp pathogenesis.
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ILC2s in AERD
ILC2s have been strongly implicated in the pathogenesis of

asthma and CRS. Patients with AERD have respiratory tissue
eosinophilia with high levels of PGD2, CysLTs, IL-33, IL-25, and
TSLP, all of which could activate ILC2s.25,28,32,70 Recently, our
group was the first, to our knowledge, to report changes in levels
of ILC2s in patients with AERD.45 We measured nasal brushing
and peripheral blood ILC2 levels at baseline and during and after
COX-1 inhibitor reactions in patients with AERD. Concomitantly,
symptom scores and urinary LTE4 and PGD2 metabolites were
analyzed at the same time points.

We found that ILC2s were recruited to the nasal mucosa (increased
in nose and reduced in blood) in AERD but not in two control
patients, during COX-1 inhibitor reactions. Further, levels of nasal
ILC2s correlated with symptom scores, and urinary LTE4 and PGD2

metabolites increased during reactions as expected. One potential
mechanism for recruitment of ILC2s to the respiratory tract during
reactions is through PGD2 binding of CRTH2 on ILC2s. Because
CRTH2 has become a target in the treatment of allergic diseases,
whether ILC2 recruitment to the nose would be reduced after admin-
istration of a CRTH2 inhibitor is an interesting avenue for investiga-
tion. In addition, the effect of long-term aspirin desensitization on
ILC2 levels might also provide insight into whether changes over
time correlate with improvement in clinical status.

CONCLUSION
AERD is a complex disease with interplay between many inflam-

matory and structural cell types as well as cytokine and lipid medi-
ators. The central clinical features of AERD are eosinophilic nasal
polyposis, asthma, and respiratory reactions to COX-1 inhibitors.
CysLTs and PGD2 levels are elevated in samples from patients with
AERD and have been known to promote many features present in the
disease. Importantly, cytokines IL-33 and TSLP were recently found
increased in AERD sinus tissue and may be promoted by CysLTs and
epithelial damage. Further, IL-25 levels wer also shown to be elevated
in the serum of patients with AERD.

ILC2s are a recently described lineage-negative lymphocyte popu-
lation that rapidly and robustly produces Th2 cytokines after stimu-
lation with many mediators, including IL-25, IL-33, TSLP, PGD2, and
CysLTs. We recently determined that ILC2s are recruited to the nasal
mucosa during COX-1 inhibitor reactions in AERD and correlate with
symptom scores.45 These findings, along with a growing body of
work on ILC2s in type 2 diseases, support a role for ILC2s in AERD.
Future investigation is required to further phenotypically and func-
tionally characterize ILC2s in these patients.
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